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Numerical solutions have been obtained for steady streaming flow past an 
axisymmetric drop over a wide range of Reynolds numbers (0.005 < Re < 250), 
Weber numbers (0.005 < We < 14), viscosity ratios (0.001 < h < lOOO), and density 
ratios (0.001 < 5 < 1000). Our results indicate that a t  lower Reynolds numbers the 
shape of the drop tends toward a spherical cap with increasing We, but a t  higher Re 
the body becomes more disk shaped with increasing We. Unlike the recirculating 
wake behind an inviscid bubble or solid particle, the eddy behind a drop is detached 
from the interface. The size of the eddy and the separation distance from the drop 
depend on the four dimensionless parameters of the problem. The motion of the fluid 
inside the drop appears to control the behaviour of the external flow near the body, 
and even for cases when h and < 4 1 (a ‘real’ bubble), a recirculating wake remains 
unattached. 

1. Introduction 
The buoyancy-driven motion of drops and bubbles plays a critical role in many 

areas of the chemical engineering industry. Such diverse processes as liquid-liquid 
extraction, flotation, sedimentation, and combustion all rely on the dispersion of one 
fluid phase in another. As a consequence, a great deal of experimental work has been 
done to study the buoyancy-driven motion of bubbles, drops, and particles (Clift, 
Grace & Weber (1978) provide a thorough survey of both theoretical and 
experimental work), and approximate theoretical solutions have been obtained for 
drops and bubbles in the limit of very small deformation for either high (Moore 1959, 
1963, 1965; Harper & Moore 1968; Parlange 1970; Harper 1972) or low (Taylor & 
Acrivos 1964 ; Brignell 1973) Reynolds number. Until recently, however, the motion 
of drops and bubbles with a finite degree of deformation could not be studied 
theoretically owing to the lack of effective methods for dealing with the unknown 
shape of the free-surface. The first successful resolution of this difficulty was reported 
by Ryskin & Leal (1984a, b )  and Christov & Volkov (1985), both of whom obtained 
numerical solutions for the steady rise of a deformable inviscid bubble, without 
an intrinsic limitation on the degree of bubble deformation. Ryskin & Leal’s 
solutions encompass Reynolds and Weber numbers in the ranges 1 < We < 20 and 
1 <Re  < 200, and show a dramatic variety of shapes and flows. The present paper 
presents a numerical study of the corresponding solutions for steady, axisymmetric 
motion of a viscous drop. 

One motivation for this work is to show that the numerical scheme of Ryskin & 
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Leal (1983) can be modified successfully to solve free-boundary problems which 
involve two fluids (rather than one viscous fluid and a void with p = ,U = 0 as in the 
original applications, Ryskin & Leal 1984a, b) .  From the viewpoint of fluid 
mechanics, thc goals of the present work are broadly to study the solution behaviour 
- flow field and drop shape - as a function of the four dimensionless parameters of the 
problem : the Reynolds number Re, Weber number We, viscosity ratio A, and density 
ratio 5. Practical interest in the results is primarily for prediction of the terminal 
velocity (or, equivalently, the hydrodynamic drag) as a function of the four 
independent dimensionless parameters and, also, as a prccursor to numerical 
predictions of transport rates in mass transfer applications. However, there are a 
number of fundamental, fluid mechanics issues which also motivate the present 
study. Foremost among these is the structure of the wake behind the drop, and the 
associated problems of vorticity transport and production a t  an int’erface a t  finite 
Reynolds number. The drop is of special interest, in this regard. First, existing 
experimental studies (Garner & Tayeban 1960, and LeClair 1970) indicate that a 
recirculating wake appears (as is also true for bubbles and solid particles), but that 
the eddy is detached from the drop surface. We have suggested previously, based 
upon numerical investigation of the wake structure behind a bubble, that 
recirculating wakes a t  Reynolds numbers of 0(102) should be viewed as being a 
consequence of vorticity accumulation rather than a finite-Reynolds-number version 
of the separation process that is described by boundary-layer theory for the 
asymptotic limit Re + 00. Clearly, a detached recirculating wake cannot be explained 
as a manifestation of the latter type of separation -there is not even a detachment 
or separation point a t  the drop surface. We suggest that the relevant mechanism 
must again be vorticity accumulation, but i t  is extremely interesting to try to 
understand why this leads to a detached wake for a drop, when almost all other 
known examples of recirculating wakes are attached. (However, see Leal & Acrivos 
1969 for another example of a detached recirculating wake a t  finite Reynolds 
number.) A second intriguing feature of the viscous drop, from a fundamental point 
of view is that vorticity is produced by a combination of a ‘no-slip’ mechanism that 
is typical of a solid body and by the surface mechanism that is typical of the free- 
shear surface for a bubble or void. The relative importance of these two mechanisms 
for a drop is controlled primarily by the viscosity ratio A.  Of particular interest is the 
relationship between the rate of vortieity production for large Reynolds numbers 
and the wake structure, compare with Dandy & Leal (1986). For a no-slip surface, 
w,  - Re; while, for a slip surface of fixed curvature, w, - O(1) for Re 9 1. The viscous 
drop allows some insight into the transition between these two extremes. Finally, 
there are a number of unresolved questions about the stability of shape and rise 
trajectory for both bubbles and drops. The solutions reported here, as well as those 
of Ryskin & Leal (1984a, b) ,  provide a starting point for understanding and 
analysing these instabilities. 

To facilitate the study of this problem, we employ the boundary-fitted orthogonal 
curvilinear coordinate grid generation technique of Ryskin & Leal (1983). It is not 
necessary to describe the method here except to note that since it is boundary-fitted, 
the free surface of the droplet corresponds to a coordinate line in the computational 
domain, thereby avoiding the problems associated with interpolation between node 
points to provide approximate boundary conditions. Further, there are two routes 
that are available when using this grid generation technique. The first is called the 
strong constraint method and is very useful for free-boundary problems. The second 
is referred to as the weak constraint method, and is useful when it is necessary to 
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specify the positions of nodal points on the boundary. In this work we have used the 
strong constraint method to generate the outer coordinate grid and the weak 
constraint method to generate the grid inside the drop. The reasons for this will be 
discussed shortly. 

2. Problem statement 
In  this section we shall discuss the formulation of the problem and the method of 

solution. We consider a viscous droplet that  is assumed to undergo a steady 
rectilinear motion, due to the action of gravity, through an outer quiescent liquid. 
The drop phase is characterized by a constant viscosity ,b and density b. (Quantities 
associated with the drop fluid will be denoted by ^.) Likewise, the outer, or 
continuous phase is represented by p and p. The interface between the two liquids is 
assumed to be completely described by a single constant parameter, the interfacial 
tension y. As shown in figure 1,  the geometry of the system is represented by 
cylindrical coordinates ( z ,  u, 4). We assume that the drop shape and flow field are 
both axisymmetric ; therefore, all quantities are independent of 4. The flow fields 
inside and outside the drop, as well as the drop shape, will be determined using a 
finite-difference numerical scheme that is a generalization of the method of Ryskin 
& Leal (1984a, b) .  

2.1. Grid generation 
In order to utilize finite-difference methods, it is necessary to define a coordinate 
grid, upon which the governing equations can be discretized. For reasons discussed 
elsewhere (Ryskin & Leal 1984a, b ;  Dandy & Leal 1986) we have chosen to use an 
orthogonal boundary-fitted coordinate grid that is generated numerically. Because 
of axisymmetry, the grid generation problem takes the form of numerically 
constructing a discrete set of mapping functions z ( 5 , q )  and u(6, q), both inside and 
outside the drop. Briefly, to generate the exterior coordinate system, we use the 
strong constraint method of Ryskin & Leal (1983, 1984a, b ) ,  which amounts to 
solving the covariant Laplace equations for z and u on a unit square in the ( 6 , ~ ) -  
curvilinear coordinate system. The drop surface corresponds to the coordinate line 
6 = 1, while infinity in the outer domain is 6 = 0. It is necessary to also generate a 
coordinate grid inside the drop, and for this inner problem the coordinate system is 
spherical in nature, with the point (z”, 6) = (0,O) corresponding to 6 = 0. After 
mapping, the computational domain for both phases will always be a unit square in 

One difficulty which arises in unbounded flow problems is the treatment of 
conditions a t  infinity. The two choices available are to either truncate the (z,u)- 
domain at some distance from the body, or to perform a coordinate inversion. Grosch 
& Orszag (1977) compared solutions obtained using coordinate inversion to those 
obtained via domain truncation for a variety of unbounded domain problems, 
including Burger’s equation, and concluded that mapping will yield more accurate 
solutions than those obtained with truncation, provided that the solution being 
sought vanishes rapidly or approaches constant values a t  infinity. For the present 
study, we follow Ryskin & Leal (1984a, b )  and use a conformal coordinate inversion 
of the outer domain: 

z + i a  = ~ 

which preserves the orthogonality of the coordinate grid. Thus, rather than map the 
outer ( z ,  u) domain directly to the ( 6 , ~ )  computational domain, the conformal 

( 6 9  7 ) .  

(1)  
1 

z* - iu* ’ 
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P 

FIGURE 1 .  Schematic sketch of the problem. 

mapping was used to transform the infinite (z,u) domain to an auxiliary finite 
domain ( z * ,  a*), which was then mapped to  a unit square in the (5, y) domain using 
the numerically generated orthogonal mapping technique. Since the domain inside 
the drop is finite, it is not necessary to carry out the coordinate inversion; the 
variables (&6) are mapped directly onto the ( 5 , ~ )  computational domain. 

Because of the inherently interesting flow structures which arise a t  the rear of the 
drops a t  larger values of the Reynolds number and Weber number, it is advantageous 
to use the strong constraint method to generate the coordinate grid in the continuous 
phase (Ryskin & Leal 1984a, 6) .  By using this strong constraint method, one can 
control grid spacing via the distortion function, denoted by f ( E ,  7). Again, we follow 
Ryskin & Leal (1984a, b ) ,  and choose f(( ,y)  = x[(l-acosxy), where 0 < a < 1 ,  
which results in a grid that is finer a t  the rear of the drop (near y = 0) than a t  the 
front, and also finer near the drop surface (6 = 1 )  than at infinity (5 = 0). 

There is one critical difference between the mapping problem for the bubble, which 
requires only one coordinate map external to the bubble surface, and the present 
problem, which requires both an internal and external coordinate map. If we are to 
avoid potentially large errors in applying boundary conditions at the drop surface, 
it is necessary that the two coordinate grids, inside and outside the drop, must match 
up exactly a t  the free surface. In  order to ensure that this is true, the strong 
constraint method is used in the outer phase and the weak constraint method is used 
in the inner phase. In the weak constraint method, complete boundary cor- 
respondence is prescribed (similar to other grid generation techniques ; see Thompson, 
Warsi & Mastin 1985), and because of this the distortion function f(5, y) cannot be 
specified. The advantage in using the weak constraint method in conjunction with 
the st,rong constraint method is that the solution of the strong constraint mapping, 
namely the position of the free surface ( z ( l , y ) , v ( l , y ) ) ,  is used as a boundary 
condition for the weak constraint method. That is, the strong constraint method 
generates the grid in the outer domain, with the position of the interface found as 
part of the solution, and then the weak constraint method is used to generate a grid 
inside the drop which matches exactly at the interface. 
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2.2. Governing equations 
The equations governing the fluid motion and the shape of the drop are the steady- 
state Navier-Stokes equations and associated boundary conditions, which we state 
with respect to a frame of reference that is fixed on the drop. In  the present work, 
these equations and boundary conditions are non-dimensionalized using the radius 
a of an undeformed drop of volume 3ta3 as the characteristic lengthscale, the uniform 
streaming velocity at infinity U ,  as a characteristic velocity, and @JZ, as the 
pressure scale. The dimensionless equations then take the form 

v-G = 0 (2 b)  

and 
2 

Re 
u-vu = - ;wp+-v54 

v - u  = 0. ( 3 b )  

The pressures p and are dynamic. The hydrostatic pressure contribution will 
thus appear in the normal stress condition a t  the drop interface. There are 
three independent dimensionless groups in these equations : the Reynolds number 
Re = 2paU,/p, the density ratio 5 = b / p  and the viscosity ratio h = F/p.  For 
some purposes, it  is more convenient to identify these three parameters as Re, 5 and 
an internal Reynolds number Re = Re CIA. The boundary condition at infinity is 

u+e, as llxll-fm. (4  a )  

u = u,  ( 4 b )  

At the drop interface we require continuity of velocity 

continuity of stress 
- 4  

n s ( 7 - 7 )  = - ( V . n ) n ,  
We 

and the kinematic condition 
n-G = n - u  = 0. 

In ( 4 c )  and ( 4 d ) ,  7 and T denote the dimensionless outer and inner stress tensors, 

respectively, given by 8 
Re 

T = - p l + - ~  

and 
1 8 
T = -$I+--{, 

Re 

and n is the unit normal to the interface, defined to be positive when pointing into 
the continuous phase. A fourth independent dimensionless group which appears in 
the boundary conditions is the Weber number We = 2paV,/y. It may also be noted 
that the viscosity ratio h appears in ( 4 c )  as an independent parameter, rather than 
in the form of an internal Reynolds number, as in (2a). The pressure which appears 
in the stress balance, ( 4 c ) ,  is the total pressure including the hydrostatic contribution. 
Although this latter term involves the density difference between the two fluids, it 
does not introduce an additional independent dimensionless parameter because the 
density difference and the velocity U ,  are not independent. 
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Owing to the axisymmetry of the problem, i t  is convenient to use a stream 
function-vorticity formulation rather than the primitive variables u and p .  To recast 
the problem, we first take the curl of ( 2 a )  and (3a) to obtain an equation in terms of 
vorticity w and velocity u, Then we express the velocity components in the general 
curvilinear coordinate system in terms of the stream function $ 1  

u-- - -  1 a$ u = - -  1 a$ ,- ah,,,aq’ ah,ag’ 

and substitute these into the velocity-vorticity formulation to obtain 

and 

where 

L2?j+6 = 0 

L2$+w = 0, 

The scale factors of the coordinate system are 

h 
and the distortion function is 

f=”. 
h, 

The geometric factors L2, h,, and h, in each phase are defined in terms of the 
appropriate coordinate variables. 

At large distances from the body the velocity asymptotically approaches the 
uniform streaming flow $ - +a2. To remove this singularity in the stream function 
we define a modified stream function by subtracting off a function which has the 
same asymptotic behaviour a t  large distances and satisfies homogeneous conditions 
at the other three boundaries. The modified stream function is $* = $ - ;a2( 1 - g3). 
The substracted term is the potential-flow solution for a spherical bubble, but it has 
no simple physical meaning for a drop of arbitrary shape. From the Oseen solution 
(Proudman & Pearson 1957) we know that $* is bounded a t  infinity, and because 
this point is a singular point of the differential equation, boundedness is a sufficient 
condition for solution (Morse & Feshbach 1953). 

The boundary conditions corresponding to (5) and (6) are: along the axes of 
symmetry, 

w , $ * , ~ , ? j  = o a t  7 = 0 , i ;  17a) 

a t  infinity, @ * , w = O  a t  6 = 0 ;  (7 b )  

and a t  the centre of the drop, ~ 

$ , G = O  a t  ( = O .  
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At the surface of the drop, there is zero normal velocity when 

l , i r = + * = O  at E = l ,  ( 7 d l  

ii,, = u,, a t  [ =  1. (7 e )  

h & s - ~ ,  = 2 ~ , u , ( h -  1)  a t  5 = 1 ,  ( 7 f )  

and continuity of tangential velocity requires that 

The tangential stress balance takes the form 

where W ,  E w ( 1 , q )  and dS = G(1,q). Finally, the normal stress balance, ( 4 c ) ,  is 

where the difference in pressure is given by 

The constant C, is determined in the present solutions by requiring the drop to 
conserve volume. 

c, = 2~;(76(g-7*T$)ud.I. 

with 

and the normal curvatures are 

and 

The incorporation of these boundary conditions into the numerical computatons will 
be discussed in the next section. 

2.3. Details of the numerical scheme 

The numerical scheme used to solve the partial differential equations is the AD1 
method of Peacemann BE Rachford (1955). An artificial time dependence is embedded 
in (5a, b)  and the Laplace equations governing the mapping, and the PDE’s are 
approximated using second-order centred finite differences (see, for example, Ryskin 
& Leal 1984a, b) .  Although (5a )  and ( 5 b )  are coupled, and the two mapping 
equations are coupled through the distortion function f ,  each set of equations is 
solved successively rather than simultaneously a t  each iteration or time step. 

The homogeneous Dirichlet conditions (7 a&) do not introduce any additional 
terms in the tridiagonal system generated by applying AD1 and, further, they are 
strong conditions in the sense that they ‘tie down’ the values of the unknown 
vorticity a t  three of the four boundaries of the domain. The remaining three 
boundary conditions - continuity of tangential velocity and the tangential and 
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normal stress balances -must somehow be used to specify the three remaining 
unknown quantities : the interface shape, and the interface vorticity values d( 1 , ~ )  
and o(1, rl) .  For application as boundary conditions, i t  is not suficient to use (7e)  and 
(7 f )  as written ; the numerical scheme requires explicit values for ds and w,. Instead, 
we use an approach based on a method developed by Dorodnitsyn & Meller (1968) 
and Israeli (1970), and described elsewhere (Ryskin 1980). Briefly, the facts that (i) 
the strength of the vorticity sheet a t  the interface is proportional to the velocity 
difference and (ii) 4& 1 , ~ )  + ut( 1 , ~ )  until numerical convergence is reached are both 
used to explicitly specify G(1,v) and o ( 1 , ~ )  at  each AD1 step. That is, until 
continuity of tangential velocity is satisfied, the local vorticity is adjusted 
proportionally to the magnitude of the velocity jump, which itself is proportional to 
the strength of the corresponding vortex sheet a t  the interface. The diffusion and 
convection of vorticity leads to  a smoothing of the velocity discontinyity. Equations 
(7a-f) are sufficient to obtain solutions to the flow equations for @*, @, o and d. The 
position of the interface is then updated using the normal stress balance, (7g), in a 
manner analogous to Ryskin & Leal (1984a, b) .  Finally, the unknown constant C, in 
the pressure expression is determined by requiring that the drop conserve volume 
each time the interface position is adjusted. 

All calculations were done on a CRAY XM-P/24. The code was vectorized 
wherever possible. In  fact, with the exception of one loop in the entire program, all 
of the inner loops were vectorized. Even though the solution of the tridiagonal 
system arising from the AD1 scheme is recursive in nature, it is possible to reverse 
the order of the loops and thus make the inner loop vectorizable. Owing to the 
extreme under-relaxation needed in employing the normal stress balance to update 
the interface shape a t  the end of each iteration, a fairly large number of iterations 
were required, particularly a t  the larger Weber numbers. The difficulty in obtaining 
convergence a t  large values of We was also encountered by Ryskin & Leal (1984a, b) .  
In  fact, these problems with the numerical method have led us to formulate a 
Newton’s method scheme for solving free-surface flow problems (Dandy & Leal 
1989). The number of iterations needed here was usually in the range 1000-7500, 
depending on the Weber number, and the corresponding CPU time required on the 
CRAY was roughly 15 to 120s. Two criteria were used to determine when the 
solution was fully converged : the maximum norm of the relative difference between 
the inner and outer velocities and the maximum norm of the absolute error in 
evaluating (7 g) both had to be less than lop3. We found that if these two convergence 
criteria were satisfied, the governing equations were also satisfied to within 
acceptable tolerances. Specifically, the maximum norms of the residuals of (6) were 
always O( 

Solutions were obtained by choosing values for A,  5, Re and We and marching along 
one of the parameter branches while holding the other three fixed. In  this manner, 
the solution a t  a particular set of parameter values were used as the initial guess for 
an incremental change in one of the four parameters. 

To explore solution behaviour as a function of the parameter space, we divided the 
problem into three parts. First, we examine the effect of changing Reynolds number 
and Weber number (as would happen if the diameter of the undeformed drop were 
changed) while holding the fluid properties A and 5 fixed. Second, the viscosity ratio 
h and the density ratio 5 are varied independently while Re and We are held fixed. 
Finally, the solutions for low Re (< 1) and high Re (> 100) are compared, where 
appropriate with the existing asymptotic solutions for high and low Reynolds 
number, and also with experimental observations. 
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3. Results and discussion 
3.1. Numerical results 

In  order to illustrate the effects of variations in Re and We, we begin with a series of 
solutions with the density ratio and viscosity ratio fixed a t  representative O( 1)  values 
of 6 = 0.91 and h = 4, respectively. Although these specific values are rather 
arbitrary, they are chosen for present purposes with the general aim of having a drop 
viscosity that is large enough to expose interesting flow behaviour (recirculating 
wakes) for moderate Reynolds numbers where solution accuracy is not an issue. In 
general, the qualitative dependence of the solutions on Re and We, illustrated below, 
was invariant to h and 5, though the details of drop shape and the flow fields were 
different. We shall examine some of these differences later in this section. 

Figures 2 and 3 show our results for the drop shape and the flow field a t  Reynolds 
numbers of 2 and 10 for the values of h and 6 mentioned above, and several values 
of We. Table 1 contains the corresponding values of the drag coefficient. (Values of 
C, for all solutions obtained in this work are displayed in table 1.) For fixed values 
of A,  5, and Re,  the shapes shown in figure 2 become more deformed with increasing 
We (or decreasing surface tension), tending towards a spherical cap shape a t  the 
higher values of the Weber number. The stream function plots in figure 3 show that 
a t  the lower values of Re the external flow, moving from left to right, induces the 
motion of a single, primary vortex inside the drop. The results for shape and external 
flow are qualitatively similar to those found by Ryskin & Leal for gas bubbles at the 
same values of Reynolds number and Weber number. However, a t  any particular Re 
and We the drop is less deformed than the bubble. 

In addition to the streamlines, we also show the corresponding vorticity fields in 
figure 3 for Re = 10. The values of vorticity are largest near the top of the drop where, 
incidentally, curvature is the highest, and smallest on the axes of symmetry, where 
the value is zero. Because of the orientation of our coordinate system, all values of 
vorticity shown, for example a t  Re = 10, We = 0.5, are negative. For small values of 
Re and We, such as Re = 0.5,  We = 0.5, the internal streamlines resemble Hill’s 
spherical vortex, that is, a foreaf t  symmetric recirculating ring, and the vorticity is 
a function of $ only, so that lines of constant vorticity are horizontal. As the 
Reynolds number is increased, for example to 10 as in figure 3, the internal vortex 
is gradually shifted towards the front of the drop. The lines of constant vorticity than 
deform in the interior, bending upwards as they approach the surface a t  the rear of 
the drop. Finally, when the drop becomes sufficiently deformed, for We 2 4, a region 
of positive vorticity appears, both inside and outside, a t  the rear of the drop. In a 
general sense, the appearance of a region of vorticity of opposite sign a t  the rear of 
the drop is no surprise. For example, a very similar region is found for both a solid 
sphere and a deformable bubble at high enough Reynolds numbers. Indeed, Lighthill 
(1986) has presented a cogent, qualitative argument to explain the change in sign of 
the vorticity at the rear of a solid body, and a similar argument can be constructed 
for a bubble or drop. The unusual feature of the solutions in figure 3 is that  the 
change in sign of the surface vorticity is not accompanied by the appearance of a 
detachment point and recirculating wake. For either a solid particle or a bubble (i.e. 
a void with a zero shear stress condition a t  the surface), a change in sign of the 
vorticity a t  the boundary is necessarily accompanied by the appearance of an 
attached circulating wake. In  fact, the point where w, = 0 corresponds precisely to 
the detachment point in both of these cases. For a drop, this is not necessarily true 
as evidenced by the solutions in figure 3. We shall return to discuss the wake 
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FIGURE 2. Drop shapes and streamlines at various values of We for Re = 2, 5 = 0.909, 
and h = 4. 

structure and vorticity distribution in more detail shortly; however, it is 
advantageous to first examine solutions for other, larger values of Re. 

Thus, we show two additional sets of solutions for the same values of h and 5 as 
above, but for Re = 60 and 100, respectively, with Weber number varying up to a 
maximum value We < 8.  The solutions for Re = 60 are shown in figure 4, while those 
for Re = 100 are given in figure 5. Comparing the results with the solutions in figure 
3 for Re = 10, we see important qualitative changes in both the drop shape and in the 
flow downstream of the drop. The main change in shape with increase of Re is that 
the drop becomes increasingly flattened at the front. Essentially, as Re increases the 
drop deformation is increasingly due to dynamic pressure forces, rather than viscous 
stresses, and there is thus a tendency for all regions near stagnation points to be 
pushed inward owing to the local maximum in pressure which exists a t  these points. 
Insofar as this trend is concerned, the solutions for a relatively viscous drop ( A  = 4) 
behave in a manner that is qualitatively similar to rising gas bubbles as reported 
earlier by Ryskin & Leal (1984a, b).  It should be noted, however, that this tendency 
to flatten near stagnation points of the external flow is counteracted to a considerable 
extent for finite values of 6 = 0.91, as considered here, by the fact that the same 
points are also stagnation points for the internal flow, and thus correspond to 
internal pressure maxima too. 

The most striking flow feature for both Re = 60 and 100 is the detached 
recirculating wake. This detached wake for the liquid drop is in marked contrast to 
the well-known attached wakes which exist on both bubbles and voids (Ryskin & 
Leal 1984a, b ;  Miksis, Vanden-Broeck & Keller 1981), and solid particles (Taneda 
1956; Nisi & Porter 1923; Rimon & Cheng 1969). However, as noted earlier, 
unattached wakes have previously been observed experimentally and predicted 
numerically for streaming flow past viscous spherical drops (Garner & Tayeban 1960; 
Rivkind & Ryskin 1976; LeClair 1970; Oliver & Chung 1987). Although the surface 
curvature for the drops a t  a given Re and We is smaller than for the gas bubbles of 
Ryskin & Leal (1984a, b ) ,  sufficient vorticity can still be produced to lead to eddy 
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FIGURE 3. Vorticity lines and streamlines for several values of We for Re = 10, 5 = 0.909, 
and A = 4 ;  l$l 2 and 101 2 
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Re We 

0.5 0.5 
1 
2 
4 

1 
1 
1 
2 
4 
6 
8 

10 
12 
14 

5 1 
2 
4 

1 
1 
1 
2 
4 
6 
8 

20 1 
2 
4 
6 

2 0.5 

10 0.5 

40 0.5 

60 0.5 
0.5 
1 
1 
2 
2 

h 

1.33 
1.33 
1.33 
1.33 
4 
4 
0.01 
0.01 
4 
4 
4 
4 
4 
4 
4 

1.33 
1.33 
1.33 
4 
4 
0.01 
0.01 
4 
4 
4 
4 

100 
100 
100 
100 

4 

4 
0.01 
0.01 
0.01 

10 
4 

5 
0.91 
0.91 
0.91 
0.91 

0.91 
0.91 
0.91 
0.1 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 

0.91 
0.91 
0.91 
0.1 
0.91 
0.91 
0.91 
0.91 

lo00 
1000 
1000 
1000 

0>91 

0.91 
0.001 
0.91 
0.1 
0.91 
0.91 

C D  

42.3 
42.5 
42.6 
42.8 

13.92 
14.05 
10.11 
10.11 
14.20 
14.38 
14.52 
14.71 
14.95 
15.09 
15.23 

5.80 
5.88 
6.12 

3.96 
4.01 
2.68 
2.69 
4.10 
4.28 
4.42 
4.88 
2.72 
2.74 
2.80 
2.85 
1.62 

1.27 
0.589 
0.660 
0.664 
1.35 
1.31 

RF: We 

2 
2 
2 

60 4 
4 
4 
4 
4 
4 
4 
6 
6 
8 

80 0.5 
100 0.5 

1 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
6 
8 

150 1 
200 1 
250 1 
275 1 
300 1 
350 1 

A 

1 
0.5 
0.01 

100 
100 
100 

4 
1.33 
1 
0.01 

10 
4 
4 
4 
4 
2 
4 

1000 
500 
200 
200 
200 
100 
50 
50 
10 
4 
2 
1 
4 
4 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

co 

5 
0.1 
0.91 
0.1 

1000 
100 

10 
0.91 
0.91 
2 
0.1 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 

0.91 
0.91 

- 

2000 
500 

1000 

20 
0.91 

0.91 
0.91 
0.91 
0.91 
0.91 
0.91 
0.91 

0.91 
0.91 
0.91 
0.91 
0.91 
0.91 

C D  

0.998 
0.890 
0.757 
1.61 
1.66 
1.67 
1.43 
1.22 
1.15 
1.04 
1.51 
1.65 
0.185 
1.08 
0.958 
0.856 
1 .oo 
1.31 
1.30 
1.29 
1.31 
1.29 
1.29 
1.29 
1.28 
1.28 
1.21 
1.10 
0.990 
0.919 
1.21 
1.30 

0.78 
0.68 
0.61 
0.58 
0.56 
0.51 

TABLE 1. Values of Re, We, h and (, and the corresponding values of drag coefficient CD for all 
solutions obtained 

formation because vorticity is also generated via the no-slip condition a t  the 
interface. It is worth noting, in this regard, that the maximum dimensionless surface 
vorticity for both Re = 60 and 100 has a value of approximately 7 when a closed- 
streamline wake first appears, and this value is similar to  the maximum surface 
vorticity when a closed-streamline wake first appears for both a gas bubble and a 
solid sphere at  similar Reynolds numbers. We shall have more to say regarding this 
later. 

An immediate question is whether we can understand the occurrence of a detached 
wake in the case of a viscous drop, when recirculating wakes behind a solid body or 
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4 

6 

8 

FIGURE 4. Stream function I1c.l 2 and vorticity Iwl 3 lo-' plots for h = 4 and g = 0.91 as il 
function of We for Re = 60. 
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FIGURE 5. Stream function 3 and vorticity 101 2 lo-' plots for A = 4 and 6 = 0.91 as a 
function of We for Re = 100. 

a bubble/void with $ = 6 = 0 are attached. Unfortunately, we have not been entirely 
successful in trying to resolve this basic question. The best that  we can do at this time 
is to suggest that there are plausible physical arguments which provide some insight 
into the occurrence of a detached wake, and show that such a flow structure does not 
violate any of the physical conditions of the problem. 

Let us begin with the last point-namely, to show that a detached wake is 
consistent with the boundary conditions for a drop. For this purpose, it is useful to 
contrast the flow structure for a drop with that obtained theoretically and 
experimentally for solid bodies and bubbles/voids, where recirculating wakes are 
attached to the body surface. We have previously expressed the view, based upon a 
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numerical study of the wake structure behind a bubblelvoid (Dandy & Leal 1986; 
Leal 1989), that  recirculating wakes behind any body a t  moderate Reynolds 
numbers, O( lo2), should be viewed as resulting from the accumulation of vorticity 
generated upstream on the body surface. Such a view is consistent with the empirical 
observation that the maximum value of surface vorticity must exceed a minimum 
threshold level (dependent upon Re) before a recirculating wake appears, which is 
approximately independent of whether the boundary condition at  the surface is no 
slip, zero shear stress or an intermediate condition. It is also motivated by the 
theoretical and experimental observation of closed wakes behind a bubble/void at 
finite Reynolds number, even though both boundary-layer analysis and numerical 
solutions indicate no ‘separation ’ or recirculating wakes a t  larger Reynolds numbers. 
Thus, in general, if the maximum vorticity a t  a body surface becomes sufficiently 
large, we can anticipate the existence of a closed-streamline eddy behind the body. 
By itself, however, this tells us nothing about whether the eddy will be attached or 
detached. Indeed, though our experience with solid bodies may seem to suggest that 
such wakes should always be attached, experiments carried out many years ago have 
already shown that a detached wake can be generated easily even for a solid body 
simply by blowing fluid out through the rear surface of the body (‘ base bleed ’) (Leal 
& Acrivos 1969). I n  order to predict attachment or detachment, we need additional 
information. 

For the solid without base bleed and for the bubble/void, the necessary 
information can be obtained by considering the vorticity distribution at the body 
surface. We have already indicated that Lighthill has provided a strong argument to 
suggest that  the surface vorticity for solid bluff bodies should change sign, and 
generalization of this argument plus numerical evidence shows that this is a general 
feature of streaming flows regardless of whether the body is a solid, a bubble/void or 
a drop. However, once we concede that the surface vorticity changes sign, it can be 
proven that a region of flow immediately adjacent to the body surface must undergo 
flow reversal for either a solid body or a bubble/void. For the solid, the surface 
vorticity is proportional to the normal derivative of the tangential velocity 
component. Hence, if w, changes sign, the velocity gradient must change sign and 
thus, since u = 0 on the surface, the direction of tangential motion adjacent to  the 
boundary must reverse at the point ws = 0. Although this does not prove that the 
reverse flow near the boundary is part of the primary vortex, it is implausible to 
suggest otherwise. For a bubble or void, the existence of a change in sign for w, also 
guarantees existence of flow reversal a t  w, = 0, and, presumably, attachment of the 
recirculating eddy. To see this, we can examine the condition of zero tangential 
stress, expressed in terms of the vorticity (this condition can be obtained directly by 
setting h = 0 in (7 f ), 

Provided K,, is non-zero, we can see that a point where w, = 0 corresponds to a point 
where the interface velocity changes sign. Again, a change in sign for w, signals a 
detachment point on the bubble surface and the implication of an attached primary 
eddy. 

For the drop, however, the situation is not so simple. In  this case, the relevant 
conditions are continuity of tangential velocity and continuity of tangential stress, 
i.e. (7f), 

Now, a change in sign of the vorticity in the outer fluid, i.e. w, = 0, does not signal 
the existence of a detachment point where u7 = Zi, = 0 unless Ads changes sign at  
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precisely the same point as w,. However, we have not been able to demonstrate that 
this should be expected, nor is it seen to occur in the numerical solutions that we have 
examined so far. An exception, of course, is h = 1 where continuity of tangential 
stress requires w, = w,. 

However, in this case the tangential stress condition is satisfied for any u,, and there 
is no reason to expect that w, = 4, = 0 should correspond to u,, = 0. Indeed, 

1 au 
W ,  = K, ‘U ---I, 

‘I h, 

so that w, = 0 implies only a geometry-dependent relationship between u,, and 
au,,/aE. From the preceding arguments, we conclude that a change in sign of w, (which 
may be expected according to the Lighthill argument for sufficiently large Re and/or 
W e )  does not imply the existence of a detachment point on the drop surface. Clearly, 
this does not prove that a detachment point will not occur, but there is no way to 
prove that the necessary condition h4, - w, = 0 will ever occur and the numerical 
results obtained in the present study never exhibited an attached recirculating flow. 

The preceding arguments essentially show that there is no obvious reason, based 
upon the boundary conditions, to anticipate that a recirculating wake will either 
exist or be attached, even if the vorticity on a drop surface changes sign. A stronger 
question is whether a detached wake could have been predicted a priori, or a t  least 
anticipated on plausible physical grounds. The best that  we can do with this 
important question is to indicate that a flow structure consisting of a single eddy 
inside the drop and a single attached eddy outside is implausible. The situation is 
sketched in figure 6 (a).  Inside the drop, very close to the surface, the fluid is moving 
in a clockwise direction, toward the rear stagnation point, while the outer fluid in the 
recirculating region of the wake is moving in the opposite direction. The implication 
is that u,, will be non-zero on the surface, all the way from the front stagnation point 
to the detachment point, but then be identically zero from the detachment point to 
the rear stagnation point. The detached wake configuration, sketched again in figure 
6 ( b ) ,  is one way to avoid this implausible situation. However, it is not a unique 
resolution. Another possibility is that  the external eddy could be attached so that u,, 
changes sign on the drop surface, but then there must exist a second internal eddy 
with the same detachment point as sketched in figure S(c). There is no obvious way 
to determine a priori which of the two configurations 6 ( b )  or 6(c) should occur (or 
even whether one of an indefinite number of other self-consistent configurations 
might appear). In fact, a double internal eddy structure has been observed in both 
numerical calculations (Rivkind & Ryskin 1976 ; LeClair et al. 1972), and experiments 
(Pruppacher & Beard 1970), but only for Re $ 1 and 5 9 h $ 1, which corresponds 
roughly to a mercury droplet or perhaps a water droplet falling through air. The 
present results indicate that the detached wake will occur for other ranges of the 
dimensionless parameters (though some caution must be used in extrapolation to 
parameter ranges that are far from those that we have actually examined). 

All of the results discussed so far were obtained by varying We with the other 
parameters held fixed. Here, we consider the effect of viscosity ratio. In  par- 
ticular, in figure 7 we present results for the case Re = 100, We = 4, 6 = 0.91 and 
1 < h < 1000. An alternative view of these results is in terms of fixed values for the 
internal Reynolds number R e  decreasing from 90 down to 0.09. One consequence of 
increasing h (or decreasing Re) is a slight decrease in deformation. A more dramatic 
and interesting effect of increasing h is that  the wake becomes larger in size, roughly 
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FIGURE 6. (a) Schematic of a hypothetical flow field (with arrows indicating the direction of flow) 
for the case of a liquid drop with an attached wake. (b )  Schematic for the flow field for the case of 
a liquid drop with a detached wake. (c) Schematic of the flow field for liquid drop with attached 
wake and secondary interior recirculating vortex. 

in proportion to  the increase in the surface vorticity as the no-slip condition becomes 
a more effective source of vorticity. We have seen that there are two mechanisms for 
producing vorticity a t  the surface of the drop : curvature and the no-slip condition. 
The results in figure 7 demonstrate that the no-slip mechanism is a more efficient 
source of vorticity than curvature a t  this Re, We and y because, as h increases, the 
curvature source decreases owing both to  the slight decrease in curvature and to the 
sharp decrease in surface velocity, while the no-slip mechanism increases. 

It may also be noted that the strength of the flow inside the drop becomes 
correspondingly smaller as the viscosity ratio becomes larger, and the detached wake 
moves in closer to  the body. Indeed, we find that 

When the viscosity ratio h is O( i) ,  the velocity at the surface of the drop is of the same 
magnitude as the characteristic velocity, U,. However, as h rises the surface velocity 
falls, and the flow inside the drop becomes weaker. The fact that the wake 
simultaneously moves closer to the drop would seem to support the idea that i t  exists 
in a detached state because i t  is forced to do so by the internal flow. The flow fields 
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FIGURE 7. Stream function l i& l  2 and vorticity (01 2 lo-' plots of Re = 100, We = 4 and 
5 = 0.91 as J function of A .  For the last plot, A = 1000, the inner stream function and vorticity 
values are 111.1 2 and 161 2 1 O P .  

in figure 7 show that a t  the lower viscosity ratios the wake is not only smaller than 
at  the larger h (since less vorticity is being produced a t  the interface), but it is also 
farther away from the body owing to the increased strength of the flow inside the 
drop. 

The surprising fact is that the wakes at  even the highest vorticity ratios considered 
in the present study, i.e. h = 100 and A = 1000, are actually still detached from the 
drop surface. However, this is easily demonstrated by examining the signs of the 
velocity a t  the interface. The limit h + 00 can be regarded as a solid particle and the 
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FIGURE 8. Stream function 2 and vorticity Iw1 2 
a function of [ / A  = 0.25. 

plots for Re = 100 and We = 4 as 
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FICGRE 9. Stream function 111.1 3 and vorticity IwI 2 plots for Re = 100, We = 4 
and h = 1: (a)  5 = 0.1; ( b )  5 = 0.01. 

wake behind such a body will be attached (see, for example, Masliyah 1970; 
Nakamura 1976). The calculations here show that as h increases the wake moves 
closer to  the drop, but up to  h = 1000 it is still not attached. On this basis, it  appears 
that the limit A --f GO is singular insofar as wake attachment is concerned. 

Although Re was held fixed to obtain the results shown in figure 7,  the interior 
Reynolds number actually decreased as h increased. To investigate the effect of 
varying h and 5 for fixed inner and outer Reynolds numbers, we did a series of 
calculations for Re = 100 and We = 4 with various values of 5 and A,  holding their 
ratio fixed at 0.25 (i.e. [ / A  = 0.25, and thus the inner Reynolds number was 25 in all 
cases). The results of these calculations are shown in figure 8. It is noteworthy that 
the solutions look very similar to those in figure 7 ,  in spite of the fact that  h and f; 
are both increased in figure 8, whereas only h was increased in figure 7. Indeed, as h 
and 5 are increased, the drop becomes less deformed, the surface velocity slows down 
in proportion to h-l, and the wake grows larger and moves closer to the rear of the 
drop. The conclusion from comparing these results with figure 7, is that neither the 
internal Reynolds number nor the density ratio 5 plays an important role in 
determining the flow field, at least in the range of parameters represented by figures 
7 and 8. 

This is not really surprising since 5 appears only indirectly in the boundary 
conditions through the pressure, whereas the vorticity ratio h appears in the viscous 
terms of both the tangential and normal stress balances. This observation has been 
confirmed by other numerical computations, particularly those of Rivkind & Ryskin 
(1976). 

This conclusion can be further corroborated by displaying some results in which A 
is held fixed and 5 varied. Two such sets of results are shown in figures 9 and 10. In  
figure 9, we show results for Re = 100, We = 4, h = 1 and two values of 5 = 0.1 and 
0.01. Together with the first result in figure 7,  for 6 = 0.5, we see that a factor of 50 
change in the magnitude of the density ratio produces only a slight change in drop 
shape, and flow field, again supporting the conclusion stated previously of only very 
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FIGURE 10. Stream function 2 and vorticity Jw] 2 lo-* plots for Re = 60, W e  = 4 
and h = 100: (a)  = 10; (6) 6 = 100; (c) 5 = 1000. 

weak dependence of the flow behaviour on 5. However, these results consider only 
small density ratios, and small internal Reynolds numbers, Be = 10 and 1, 
respectively, for figures 9(a)  and 9 ( b ) .  Hence, in figure 10, we show additional cases 
where Re = 60, We = 4, and h is held fixed at 100, while y takes on three values, 
y = 10, 100 and 1000. The corresponding interior Reynolds numbers are 6, 60, and 
600. The most important conclusion, based upon comparing the three parts of figure 
10, is that the drop shape and wake structure are hardly changed a t  all, except for 
a slight decrease in deformation, and thus a decrease in the size of the recirculating 
wake. It is not surprising that the drop should become less deformed as g increases. 
With an internal fluid which has a significant density, the interior stagnation 
pressurLs will tend to  compensate for the exterior stagnation pressure. The only 
surprise is that the effect of variation of 5 is so weak. 

Although the results of figures 5-10 represent variations in all of the four 
independent dimensionless parameters, we have not yet systematically studied 
conditions when the internal Reynolds number exceeds the external Reynolds 
number, that is R e  > Re .  This situation is considered in this and the next paragraph, 
beginning with figure 11, which presents results for We = 1, and a very small fixed 
value of h = 0.01, with Re and y varied so as to produce internal Reynolds numbers 
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FIGURE 1 1 .  Stream function 2 and vofticity 101 2 plots for We-= 1 and h = 0.01 : (a )  
Re = 2,  (= 0.1, Re = 20; ( b )  Re = 10, [= ,O. l ,  Re = 100; ( c )  Re = 2, [ =  0.9, Re = 182: ( d )  Re = 60, 
5 = 0.1, f f e  = 600; ( e )  Re = 10, 5 = 0.9, Re = 909; ( f )  Re = 60, [ = 0.9, Re = 5455. 
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FIGURE 12. Stream function 2 !O-3 and vorticity IwI 2 lo-' plots for Re = 60, h = 0.01 
and {=  0.1 (Re = 600): (a )  We = 2 ;  ( b )  We = 4. 

ranging from 18 to 5455. At this Weber number, there is relatively little deformation 
for any of the cases shown in figure 11. Indeed, the primary change in the solutions 
is that the inner vorticity lines become increasingly distorted and crowded near the 
interface - revealing the development of a vorticity boundary layer inside the drop 
for the larger values of Re. This is especially evident in the case Re = 60, h = 0.01, 
5 = 0.9 which corresponds to Re = 5455. In this case, the vorticity gradients are 
confined to a thin region near the interface, surrounding a constant-vorticity core. 

The effect of We for Re >Re is illustrated in figure 12. As before, the degree of 
deformation increases as We increases, but the effect on the flow field is primarily on 
the internal flow. In both cases, as well as the case Re = 60, We = 1, h = 0.01 and 
6 = 0.1 from figure 11,  the vorticity inside the drop change sign a t  the point of 
maximum curvature, while the exterior vorticity remains negative over the whole of 
the drop surface. In this regard, the small-h solutions considered here are 
fundamentally different from the solutions for h = 4, considered previously. In the 
latter case, it can be seen from the tangential stress condition (7 f )  that 4, can only 
change sign if w, changes sign. However, for h = 0.01 the tangential stress condition 
does not impose any such constraint. 

3.2. Comparison with experiment 
There have been a relatively large number of experimental studies of the motion of 
viscous drops in the approximate range of parameters considered in the present 
work. An attempt to collate the results for drop shape was made by Clift et al. (1978) 
who presented a generalized graphical correlation for drop and bubble shapes. 
Among the studies that have produced photographs or systematic descriptions of 
drop shapes as well as some general features of the flow, are Welleck, Agrawall & 
Skelland (1966), Hendrix, Dave & Johnson (1967), and Satapathy & Smith (1960). 
Unfortunately, however, direct comparisons with the present solutions cannot be 
made. Neither Welleck et al. nor Hendrix et al. provide interfacial tension data, so 
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FIGURE 13. Comparison of selected numerical results with experimental observations of Thorsen 
etaZ.(l968):(A)We=l,h=2.5,(=0.91,Re= lOO,150,200,250,300,350;(B)R~=100,W~=1,  
h = 2 ,  (=  0 . 5 ;  ( C ) R e  = 100, We = 0.5, A = 1, (= 0.02; (D) Re = 60, We = 0.5, h = 4, (= 0.91; (E) 
Re = 60, We = 1, h = 0.01, ( = 0.001; (F) Re = 80, We = 0.5, h = 4, 5 = 0.91. 

that the Weber numbers are not known. Similarly, Satapathy & Smith fail to list the 
disperse-phase fluids, and attempt to categorize the drop shape and flow regimes 
solely as a function of Reynolds number. The most that  we can say is that the gross 
features of the present solutions - that is, flow field and shape - compare favourably 
with t h e  steady results found in t,he experimental papers. At low Weber numbers, the 
shapes of the drops are spheroidal (nearly spherical and elliptical) and at  higher 
values of We the shape tends to a spherical or ellipsoidal cap. At intermediate values 
of Re, the shape is ellipsoidal in nature, and an appreciably sized recirculating wake 
forms a t  the rear of the drop. We have already mentioned the experimental 
investigations that show a detached wake. In addition to drop shape and general flow 
features, the other information of greatest practical significance is the drag or 
terminal velocity. 

Thorsen, St,ordalen & Terjesen (1968) performed an extensive series of experiments 
to obtain the terminal velocities of carefully purified organiclwater systems. Their 
aim was to obtain results for both the steady and oscillating regimes. We have 
reproduced the experimental data of Thorsen et al. (their figure 13), and superimposed 
results from our numerical solutions. The result is shown in figure 13. The solid 
symbols represent experimental results obtained by Thorsen et al. using a surface- 
active agent, while the light symbols are for pure fluids. Two general conclusions can 
be made from examination of this figure: first, the numerical results of the present 
work for small Weber numbers are qualitatively and quantitatively comparable with 
experimental results. Second, the fact that  only the results for low We can be 
correlated with the experimental results of Thorsen et al. indicates that a universal 
correlation for arbitrary We may not exist. 
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3.3. Comparison with other theoretical results 
So far as we are aware, there have been no previous investigations that report 
theoretical results for the motion of a viscous drop with an arbitrary degree of 
deformation. Indeed, the only existing analytic solutions are asymptotic results for 
slightly deformed drops at  high and low Reynolds numbers. 

An analysis of drops translating through a fluid a t  large Reynolds number was 
carried out by Harper & Moore (1968), following an earlier boundary-layer analysis 
for bubbles due to Moore (1963, 1965). Harper & Moore (1968) showed that the 
limiting solution for a spherical drop in the limit Re + 00 is the potential-flow solution 
outside and Hill’s spherical vortex inside, except for thin boundary layers existing 
near the drop interface, along the axis of symmetry inside the drop, and downstream 
of the drop in a thin wake extending to infinity. In contrast to this asymptotic flow 
structure, the present numerical results for finite Reynolds numbers show extensive 
regions of significant vorticity, with a recirculating wake for sufficiently large We and 
Re 2 60 that  is detached from the drop surface. 

Apart from the fact that the wake is detached, the situation is very similar to  that 
described earlier by Ryskin & Leal (1984a, b )  for a deformable bubble/void. In  that 
case, recirculating wakes were also found for finite Reynolds numbers, though 
boundary-layer analysis indicates that separation should not occur for Re + 00. 

Dandy & Leal (1986) later demonstrated that the recirculating wake was strictly a 
finite-Reynolds-number phenomenon, due to vorticity accumulation behind the 
bubble, which disappeared for sufficiently large Re. As we have noted earlier, the idea 
that the recirculating wake does not represent separation in the usual boundary- 
layer sense is seemingly corroborated by the present solutions, which show 
recirculation without a point of detachment (separation) on the drop surface. One 
important difference between the bubble and drop is that vorticity is generated for 
the drop by both surface curvature (as for the bubble) and no slip in relative 
proportions that depend on A. Evidently, one consequence is that sufficient vorticity 
is generated to produce a recirculating wake for h 2 O(1) with relatively little 
deformation, in sharp contrast to the bubble/void where a threshold level of 
deformation is required to produce a recirculating wake. The relationship between A,  
surface vorticity, and wake structure is particularly striking for the series of solutions 
in figure 7. 

An interesting question, in view of the solutions that we have obtained for 
relatively large but finite Reynolds numbers, is whether the asymptotic structure 
found by Harper & Moore (1968) will actually exist for Re 9 1. Specifically, although 
it is unlikely that a sufficiently small Weber number can be achieved for Re % 1 to 
keep the drop from deforming, we might anticipate from Harper & Moore’s solution 
that regions of significant vorticity would be confined to thin boundary layers and 
wakes for sufficiently large Reynolds number, with no recirculating zone down- 
stream. If true, this would be very much like the behaviour found by Dandy & Leal 
(1986) for a bubble/void. 

To investigate the effect of the Reynolds number on the flow fields a t  large Re, a 
series of calculations were done for We = 1, 5 = 0.91, h = 2.5 and 150 < Re < 350. 
The idea was to choose a value of We and h such that the rate of vorticity production 
might be small enough that convective transport could sweep the vorticity away 
(and thus ‘dissipate’ the recirculating wake) a t  finite Re so that a transition toward 
the asymptotic structure might be evident numerically. In  using second-order 
centred finite differences there is an upper bound on Re for which (reliable) solutions 
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FIGURE 14. The flow field as a function of Re for We = 1, [ = 0.909, and h = 2.5. 

may be obtained, which in turn depends on the cell Reynolds number (or, a Reynolds 
number based on the discretization). Thus, a fine mesh will increase the Reynolds 
number a t  which a reliable solution can be found. With the discretization used 
(61 x 61 mesh, inside and out), and the nearly spherical shapes arising from We = 1, 
we had little trouble finding apparently reliable solutions up to Re = 400. Figure 14 
shows the flow behaviour as Re is increased : the recirculating wake first appears a t  
a Reynolds number of approximately 60, grows to a maximum length at roughly 
Re = 180, and then completely disappears by the time the Reynolds number reaches 
350. Note that as the eddy shrinks in size the vortex inside the drop becomes more 
fore-aft symmetric, that is, closer to Hill’s vortex. We conclude from these solutions 
that the asymptotic structure found by Harper & Moore will exist for sufficiently 
large Reynolds number. Comparison of C, between our numerical solutions and the 
analytical work of Harper & Moore can be found in table 2 for a variety of Reynolds 
numbers. 

Another interesting aspect of the solutions shown in figure 14 is that for Re 2 100 
the drop shape is relatively insensitive to Reynolds number. A similar insensitivity to 
Re was also observed by Ryskin & Leal in their work on deformable bubbleslvoids. 
Had the shape not been so insensitive to Re, that is, had deformation increased with 
increasing Reynolds number as was true for lower Reynolds numbers, then it 
probably would not have been possible to determine anything about the 
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Re 

100 
150 
200 
250 
300 
350 
400 

Harper & Moore 

-0.4854 
0.3142 
0.5192 
0.5692 
0.5686 
0.5502 
0.5256 

Present work 

0.912 
0.726 
0.633 
0.570 
0.565 
0.554 
- 

TABLE 2. Comparison between analytical results of Harper & Moore (1968) and present work, for 
h = 2.5 and g = 0.91. The formula for C, in Harper & Moore is 

where V = = 0.4, V' = ([A)-: = 0.66332, A, = (2V+3)/(2V'+3) = 0.878278, C, % 0.120775, 
C, x 7.099424, C, x -8.745213. 

Re 

FIQURE 15. Plot of maximum surfye vorticity w, versus Re for several values of the viscosity 
ratio. The upper solid line is w = Re5 and the lower line is calculated values of w, for a void of fixed 
shape. 

correspondence between the results of this work and those of Harper & Moore. A 
great deal of care was taken to ensure that the numerical results are accurate, and 
that they do not depend on either numerical parameters or the method used. A much 
more detailed discussion of the accuracy of the numerical scheme is given in an earlier 
paper (Dandy & Leal 1986). Of course, the results for other values of We, h and g will 
be different in detail from those exhibited here, but we expect that the same 
qualitative behaviour would be manifested a t  sufficiently large Re in all cases. 

Another point of interest is the Reynolds-number dependence of wake structure 
and its dependence on A ,  i.e. on the relative mix of vorticity production by the 
boundary curvature and no slip. Theory predicts that in the limit A+ 00, the 

7 FLM 208 
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A 2.5 
8 4  

1 -  mu2 

0.2 I I I 
0.5 1 10 100 300 0.2 0.5 I /  1 10 , ‘ 4  100 300 

Re 

FIGURE 16. Comparison of C, between numerical results of present work (symbols) and 
correlation of Rivkind & Ryskin (1976) (curves). 

maximum surface vorticity becomes proportional to the square-root of the Reynolds 
number for Re >> 1, that is, w, cc Rei, and in this case, a separated flow with 
recirculating wake exists even in the limit Re + co, as predicted by boundary-layer 
theory. On the other hand, for A = 0, w, + constant as Re + co for a body of fixed 
shape, and we showed in an earlier paper that the recirculating wake then disappears 
for sufficiently large Re, also in agreement with boundary-layer analysis. The 
solutions for a viscous drop, considered here, provide a basis for examining the 
transition process where vorticity is produced by some combination of no slip and 
boundary curvature. In figure 15 we display numerical results from the present work 
for 0, at  fixed We = 0.5, = 0.91 and several different Reynolds numbers : 100, 150, 
200 and 250. The upper solid line is w = Ref and it is apparent that as A increases, w, 
tends toward an Re; dependence. The lower solid line is a plot of numerically 
calculated values of w, as a function of Re, for a void of fixed shape, taken from 
Dandy & Leal (1986). It is apparent for the void that w, asymptotes to a constant 
as Re --f co. The fact that convection of vorticity downstream becomes increasingly 
efficient for increasing Re, while the rate of vorticity production asymptotes to a 
constant value in this case, may explain the disappearance of the recirculating wake 
for increasing Re (as shown by Dandy & Leal 1986). Similarly, for A = O(1) the 
manitude of vorticity w, increases much more slowly with Re than for a solid, and 
this may account for the disappearance of the recirculating wake with increase of Re 
in these cases. 

As a check on our numerical results a t  higher values of Re, we compare drag 
coefficients calculated in this work against those of Rivkind & Ryskin (1976) who 
present a correlation for calculating the drag on a viscous spherical drop, as a 
function of Re and A :  c, =“A( -+7)+g] .  24 4 

(8) A + 1  Re Re5 
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FIQURE 17. Comparison between numerical results of this work at C, = 48.4 (-) and asymptotic 
analysis of Taylor & Acrivos at C, = 48.7 (---) for Re = 0.5, We = 0.5, 5 = 0.909, and A = 4. 

We have computed solutions for We = 0.5 and [ = 0.91 and a range of Reynolds 
numbers 0.5 < R e  < 300 at three values of the viscosity ratio: 1.33, 2.5 and 4;  some 
of these solutions are shown in figure 14, the rest are in Dandy (1987). We chose 
We = 0.5 so that the drops would be nearly spherical. We also computed solutions for 
a solid spherical particle. The results of all of these numerical calculations are 
compared with the correlation of Rivkind & Ryskin in figure 16. The symbols 
correspond to our numerical results and the lines to the correlation. 

At lower Reynolds numbers (< l), numerical results are a great deal easier to 
obtain, and the shapes and flow fields are simpler than at  the higher Reynolds 
numbers. A comparison of a result for Re = 0.5, We = 0.5, [ = 0.91 and h = 4 with 
the theoretical prediction of Taylor & Acrivos (1964) is shown in figure 17, where the 
solid line indicates the result from this work and the dashed line is the result of 
Taylor & Acrivos. The agreement between the two shapes is pretty good, especially 
considering that the work by Taylor & Acrivos is an asymptotic analysis which 
applies only in the limit Re, We Q 1. The drag coefficients compare favourably, with 
Taylor & Acrivos predicting CD = 48.4, and the numerical results from this work 
yielding CD = 48.7. 

4. Conclusion 
The problem solved here demonstrates the viability of a finite-difference technique 

in conjunction with the grid generation technique of Ryskin & Leal (1983) for the 
solution of two-fluid free-boundary problems. In the past 15 years a tremendous 
amount of work has been put into different methods of generating both orthogonal 
and non-orthogonal coordinate grids (for a review of this work, see Eiseman 1985; 
Thompson et al. 1985), so that there is now a very versatile collection of grid 
generation techniques available, and no fundamental difficulty in applying finite- 
difference techniques to complicated (and unknown) domains. As far as we know, 
however, very little prior work has been done using either finite-difference or finite- 
element techniques on a two-fluid free-boundary problem at finite Reynolds number. 
In effect, our numerical technique enables us to perform experiments that would be 
difficult to carry out in the laboratory: for example, we have the ability to 
independently vary the four dimensionless parameters that are present in this 
problem, and the structure of the recirculating wake can be displayed in great detail. 

7-2 
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Although the detached recirculating wake structure is not new in the fluid 
mechanisms literature, it is nevertheless quite novel and its appearance is impossible 
to understand on the basis of concepts of separation from boundary-layer theory. 
Indeed, as we have demonstrated, the existence of closed-streamline wakes behind 
bubbles and drops is strictly a finite-Reynolds-number phenomenon. Another 
unusual, and as yet unexplained, feature of the solutions for a drop is the lack of 
correlation between the appearance of a change in sign for the vorticity a t  the drop 
surface and the presence of a separation point. This is a unique property of flow past 
a drop, which is not shared by either solid bodies or bubbles/voids. Other features 
of the solutions appear to be in accord with qualitative expectations and/or 
experimental observations. In particular, for a fixed Reynolds number and Weber 
number, the drop shape became slightly more distorted with decreasing density ratio 
or viscosity ratio. Further, if a recirculating wake was present, it  grew in size when 
h was increased, and moved closer to the rear of the drop owing to the slowing of the 
interior flow. The range of shapes that were observed in this work for 0.5 5 Re 5 300 
and 0.5 5 We 5 15 were in qualitative agreement with the predictions of the 
graphical correlation in Clift et al. and with direct experimental observation. 

All computations were carried out on the CRAY X-MP/24 located at  the San 
Diego Supercomputing Center, and the authors wish to acknowledge the expert help 
and courtesy shown by SDSC staff member Dr Robert Leary. This work was 
supported by grants from the Fluid Mechanics Program and the Office of Advanced 
Scientific Computing at the National Science Foundation. 
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